抢拍神器的关键:优化提升Java线程局部随机数ThreadLocalRandom高并发技巧 - alidg

20-05-05 banq

在本文中,探讨将Java随机数算法优化为高吞吐量和低延迟的各种技巧。技巧包括更有效的对象分配,更有效的内存访问,消除不必要的间接访问以及机械同情。(对于分布式环境的抢拍很重要)

Java 7引入了,ThreadLocalRandom以在竞争激烈的环境中提高随机数生成的吞吐量。

背后的原理ThreadLocalRandom很简单:Random每个线程都维护自己的版本,而不是共享一个全局实例Random。反过来,这减少了争用,从而提高了吞吐量。

由于这是一个简单的想法,因此我们应该能够袖手旁观,并ThreadLocalRandom以类似的性能实现类似的功能,对吗?

让我们来看看。

第一次尝试

在我们的第一次尝试中,我们将使用简单的方法ThreadLocal<Random>:

// A few annotations
public class RandomBenchmark {

    private final Random random = new Random();
    private final ThreadLocal<Random> simpleThreadLocal = ThreadLocal.withInitial(Random::new);

    @Benchmark
    @BenchmarkMode(Throughput)
    public int regularRandom() {
        return random.nextInt();
    }

    @Benchmark
    @BenchmarkMode(Throughput)
    public int simpleThreadLocal() {
        return simpleThreadLocal.get().nextInt();
    }

    @Benchmark
    @BenchmarkMode(Throughput)
    public int builtinThreadLocal() {
        return ThreadLocalRandom.current().nextInt();
    }

    // omitted
}

在此基准测试中,我们正在比较Random,我们自己简单的ThreadLocal<Random>和内置的ThreadLocalRandom:

Benchmark                             Mode  Cnt           Score          Error  Units
RandomBenchmark.builtinThreadLocal   thrpt   40  1023676193.004 ± 26617584.814  ops/s
RandomBenchmark.regularRandom        thrpt   40     7487301.035 ±   244268.309  ops/s
RandomBenchmark.simpleThreadLocal    thrpt   40   382674281.696 ± 13197821.344  ops/s

ThreadLocalRandom生成每秒约1十亿随机数。

线性同余法

迄今为止,当今使用最广泛的随机数生成器是DH Lehmer在1949年推出的线性同余伪随机数生成器。

(具体算法见原文),Java实现:

protected int next(int bits) {
    long oldseed, nextseed;
    AtomicLong seed = this.seed;
    do {
        oldseed = seed.get();
        nextseed = (oldseed * multiplier + addend) & mask;
    } while (!seed.compareAndSet(oldseed, nextseed));
    return (int)(nextseed >>> (48 - bits));
}

由于多个线程可以潜在地同时更新值seed,因此我们需要某种同步来协调并发访问。在这里,Java 在原子的帮助下使用了无锁方法。

基本上,每个线程都会尝试通过原子地将种子值更改为一个新值compareAndSet。如果线程无法执行此操作,它将重试相同的过程,直到可以成功提交更新。

当争用较高时,CAS失败的次数会增加。这是Random并发环境中性能低下的主要原因。

没有更多的CAS

在基于ThreadLocal的实现中,seed值限于每个线程。因此,由于没有共享的可变状态,因此我们不需要原子或任何其他形式的同步:

public class MyThreadLocalRandom extends Random {

    // omitted
    private static final ThreadLocal<MyThreadLocalRandom> threadLocal = 
        ThreadLocal.withInitial(MyThreadLocalRandom::new);

    private MyThreadLocalRandom() {}

    public static MyThreadLocalRandom current() {
        return threadLocal.get();
    }

    @Override
    protected int next(int bits) {
        seed = (seed * multiplier + addend) & mask;
        return (int) (seed >>> (48 - bits));
    }
}

如果我们再次运行相同的基准测试:

Benchmark Mode Cnt Score Error Units RandomBenchmark.builtinThreadLocal thrpt 40 1023676193.004 ± 26617584.814 ops/s RandomBenchmark.lockFreeThreadLocal thrpt 40 695217843.076 ± 17455041.160 ops/s RandomBenchmark.regularRandom thrpt 40 7487301.035 ± 244268.309 ops/s RandomBenchmark.simpleThreadLocal thrpt 40 382674281.696 ± 13197821.344 ops/s

MyThreadLocalRandom的吞吐量几乎是简单ThreadLocal<Random>的两倍。

在compareAndSet提供了原子和内存排序保证,我们只是在一个线程上下文限制也不需要。由于这些保证是昂贵且不必要的,因此删除保证会大大提高吞吐量。

但是,我们仍然落后于内置功能ThreadLocalRandom!

删除间接

事实证明,每个线程都不需要自己的单独且完整的副本Random。它只需要最新seed值即可。

Java 8开始,这些值已添加到Thread类本身:

/** The current seed for a ThreadLocalRandom */
@jdk.internal.vm.annotation.Contended("tlr")
long threadLocalRandomSeed;

/** Probe hash value; nonzero if threadLocalRandomSeed initialized */
@jdk.internal.vm.annotation.Contended("tlr")
int threadLocalRandomProbe;

/** Secondary seed isolated from public ThreadLocalRandom sequence */
@jdk.internal.vm.annotation.Contended("tlr")
int threadLocalRandomSecondarySeed;

MyThreadLocalRandom每个线程实例都在threadLocalRandomSeed变量中维护其当前值seed。结果,ThreadLocalRandom类成为单例

/** The common ThreadLocalRandom */
static final ThreadLocalRandom instance = new ThreadLocalRandom();

每次我们调用ThreadLocalRandom.current()的时候,它懒初始化threadLocalRandomSeed,然后返回singelton:

public static ThreadLocalRandom current() {
    if (U.getInt(Thread.currentThread(), PROBE) == 0)
        localInit();
    return instance;
}

使用MyThreadLocalRandom,每次对current()factory方法的调用都会转换为ThreadLocal实例的哈希值计算和在基础哈希表中的查找。

相反,使用这种新的Java 8+方法,我们要做的就是直接读取threadLocalRandomSeed值,然后再对其进行更新。

高效的内存访问

为了更新种子值,java.util.concurrent.ThreadLocalRandom需要更改类中的threadLocalRandomSeed状态java.lang.Thread。如果我们设置为state public,那么每个人都可能更新threadLocalRandomSeed,这不是很好。

我们可以使用反射来更新非公开状态,但是仅仅因为我们可以,并不意味着我们应该!

事实证明,ThreadLocalRandom可以使用本机方法Unsafe.putLong有效地更新threadLocalRandomSeed状态:

/**
* The seed increment.
*/
private static final long GAMMA = 0x9e3779b97f4a7c15L;
private static final Unsafe U = Unsafe.getUnsafe();
private static final long SEED = U.objectFieldOffset(Thread.class, "threadLocalRandomSeed");

final long nextSeed() {
    Thread t; 
    long r; // read and update per-thread seed
    U.putLong(t = Thread.currentThread(), SEED, r = U.getLong(t, SEED) + GAMMA);

    return r;
}

putLong方法将r值写入相对于当前线程的某个内存地址。内存偏移量已经通过调用另一个本机方法计算得出Unsafe.objectFieldOffset。

与反射相反,所有这些方法都具有本机实现,并且非常有效。

虚假共享False Sharing

CPU高速缓存根据高速缓存行进行工作。即,高速缓存行是CPU高速缓存和主存储器之间的传输单位。

基本上,处理器倾向于将一些其他值与请求的值一起缓存。这种空间局部性优化通常可以提高吞吐量和内存访问延迟。

但是,当两个或多个线程竞争同一条缓存行时,多线程可能会产生适得其反的效果。

为了更好地理解这一点,让我们假设以下变量位于同一缓存行中:

public class Thread implements Runnable {
    private final long tid;
    long threadLocalRandomSeed;
    int threadLocalRandomProbe;
    int threadLocalRandomSecondarySeed;

    // omitted
}

一些线程tid出于某些未知目的而使用or线程ID。现在,如果我们更新threadLocalRandomSeed线程中的值以生成随机数,那么应该不会发生什么不好的事情,对吗?听起来好像没什么大不了的,因为有些线程正在读取tid,而另一个线程则将整个线程写入另一个内存位置。

尽管我们可能会想,但由于所有这些值都在同一缓存行中,因此读取线程将遇到缓存未命中。编写器需要刷新其存储缓冲区。这种现象称为错误共享False Sharing,会给我们的多线程应用程序带来性能下降。

为了避免错误的共享问题,我们可以在有争议的值周围添加一些填充。这样,每个竞争激烈的值将驻留在自己的缓存行中:

public class Thread implements Runnable {
    private final long tid;
    private long p11, p12, p13, p14, p15, p16, p17 = 0; // one 64 bit long + 7 more => 64 Bytes

    long threadLocalRandomSeed;
    private long p21, p22, p23, p24, p25, p26, p27 = 0;

    int threadLocalRandomProbe;
    private long p31, p32, p33, p34, p35, p36, p37 = 0;

    int threadLocalRandomSecondarySeed;
    private long p41, p42, p43, p44, p45, p46, p47 = 0;

    // omitted
}

在大多数现代处理器中,缓存行大小通常为64或128字节。在我的机器上,它是64个字节,因此long在tid声明之后,我又添加了7个哑数值。

通常,这些threadLocal*变量将在同一线程中更新。因此,最好隔离一下tid:

public class Thread implements Runnable {
    private final long tid;
    private long p11, p12, p13, p14, p15, p16, p17 = 0;

    long threadLocalRandomSeed;
    int threadLocalRandomProbe;
    int threadLocalRandomSecondarySeed;

    // omitted
}

读取器线程不会遇到高速缓存未命中的情况,而写入器则不需要立即清除其存储缓冲区,因为这些局部变量不是volatile。

竞争注释

jdk.internal.vm.annotation.Contended注解(如果你是在Java8则是sun.misc.Contended)是JVM隔离注释字段,以避免错误共享的提示。因此,以下内容应该更有意义:

/** The current seed for a ThreadLocalRandom */
@jdk.internal.vm.annotation.Contended("tlr")
long threadLocalRandomSeed;

/** Probe hash value; nonzero if threadLocalRandomSeed initialized */
@jdk.internal.vm.annotation.Contended("tlr")
int threadLocalRandomProbe;

/** Secondary seed isolated from public ThreadLocalRandom sequence */
@jdk.internal.vm.annotation.Contended("tlr")
int threadLocalRandomSecondarySeed;

借助ContendedPaddingWidth调整标记,我们可以控制填充宽度

threadLocalRandomSecondarySeed是ForkJoinPool或ConcurrentSkipListMap的内部使用的seed。另外,threadLocalRandomProbe表示当前线程是否已初始化其seed。

在本文中,我们探讨了将RNG优化为高吞吐量和低延迟的各种技巧。技巧包括更有效的对象分配,更有效的内存访问,消除不必要的间接访问以及机械同情。

              

猜你喜欢