Elasticsearch是一个搜索和分析引擎,适合需要灵活过滤的场景。有时,我们需要检索所请求的数据及其聚合信息。 在本教程中,我们将探讨如何做到这一点。
Elasticsearch 聚合搜索
让我们首先探索 Elasticsearch 的聚合功能。
一旦我们在 localhost 上运行了 Elasticsearch 实例,我们就创建一个名为store-items 的索引,其中包含一些文档:
POST http://localhost:9200/store-items/_doc
{
"type": "Multimedia",
"name": "PC Monitor",
"price": 1000
}
...
POST http://localhost:9200/store-items/_doc
{
"type": "Pets",
"name": "Dog Toy",
"price": 10
}
|
现在,让我们在不应用任何过滤器的情况下查询它:
GET http://localhost:9200/store-items/_search
现在让我们看一下响应:
{
...
"hits": {
"total": {
"value": 5,
"relation": "eq"
},
"max_score": 1.0,
"hits": [
{
"_index": "store-items",
"_type": "_doc",
"_id": "J49VVI8B6ADL84Kpbm8A",
"_score": 1.0,
"_source": {
"_class": "com.baeldung.model.StoreItem",
"type": "Multimedia",
"name": "PC Monitor",
"price": 1000
}
},
{
"_index": "store-items",
"_type": "_doc",
"_id": "KI9VVI8B6ADL84Kpbm8A",
"_score": 1.0,
"_source": {
"type": "Pets",
"name": "Dog Toy",
"price": 10
}
},
...
]
}
}
|
我们在回复中提供了一些与商店物品相关的文档。每个文档对应于特定类型的商店项目。
接下来,假设我们想知道每种类型有多少个项目。让我们将聚合部分添加到请求正文并再次搜索索引:
GET http://localhost:9200/store-items/_search
{
"aggs": {
"type_aggregation": {
"terms": {
"field": "type"
}
}
}
}
|
我们添加了名为type_aggregation的聚合,它使用术语聚合。
正如我们在响应中看到的,有一个新的聚合部分,我们可以在其中找到有关每种类型的文档数量的信息:
{
...
"aggregations": {
"type_aggregation": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "Multimedia",
"doc_count": 2
},
{
"key": "Pets",
"doc_count": 2
},
{
"key": "Home tech",
"doc_count": 1
}
]
}
}
}
|
Spring Data Elasticsearch 聚合搜索
让我们使用Spring Data Elasticsearch实现上一节中的功能。让我们首先添加依赖项:
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-elasticsearch</artifactId>
</dependency>
|
下一步,我们提供一个 Elasticsearch 配置类:
@Configuration
@EnableElasticsearchRepositories(basePackages = "com.baeldung.spring.data.es.aggregation.repository")
@ComponentScan(basePackages = "com.baeldung.spring.data.es.aggregation")
public class ElasticSearchConfig {
@Bean
public RestClient elasticsearchRestClient() {
return RestClient.builder(HttpHost.create("localhost:9200"))
.setHttpClientConfigCallback(httpClientBuilder -> {
httpClientBuilder.addInterceptorLast((HttpResponseInterceptor) (response, context) ->
response.addHeader("X-Elastic-Product", "Elasticsearch"));
return httpClientBuilder;
})
.build();
}
@Bean
public ElasticsearchClient elasticsearchClient(RestClient restClient) {
return ElasticsearchClients.createImperative(restClient);
}
@Bean(name = { "elasticsearchOperations", "elasticsearchTemplate" })
public ElasticsearchOperations elasticsearchOperations(
ElasticsearchClient elasticsearchClient) {
ElasticsearchTemplate template = new ElasticsearchTemplate(elasticsearchClient);
template.setRefreshPolicy(null);
return template;
}
}
|
在这里,我们指定了一个低级 Elasticsearch REST 客户端及其实现ElasticsearchOperations接口的包装器 bean。现在,让我们创建一个StoreItem实体:
@Document(indexName = "store-items")
public class StoreItem {
@Id
private String id;
@Field(type = Keyword)
private String type;
@Field(type = Keyword)
private String name;
@Field(type = Keyword)
private Long price;
//getters and setters
}
|
我们使用了与上一节相同的商店项目索引。由于我们无法使用 Spring Data 存储库的内置功能来检索聚合,因此我们需要创建一个存储库扩展。让我们创建一个扩展接口:
public interface StoreItemRepositoryExtension {
SearchPage<StoreItem> findAllWithAggregations(Pageable pageable);
}
|
这里我们有findAllWithAggregations()方法,它使用Pageable接口实现并返回包含我们的项目的SearchPage。接下来,让我们创建该接口的实现:
@Component
public class StoreItemRepositoryExtensionImpl implements StoreItemRepositoryExtension {
@Autowired
private ElasticsearchOperations elasticsearchOperations;
@Override
public SearchPage<StoreItem> findAllWithAggregations(Pageable pageable) {
Query query = NativeQuery.builder()
.withAggregation("type_aggregation",
Aggregation.of(b -> b.terms(t -> t.field("type"))))
.build();
SearchHits<StoreItem> response = elasticsearchOperations.search(query, StoreItem.class);
return SearchHitSupport.searchPageFor(response, pageable);
}
}
|
我们构建了本机查询,并合并了聚合部分。按照上一节的模式,我们使用type_aggregation作为聚合名称。然后,我们利用术语聚合类型来计算响应中每个指定字段的文档数。
最后,让我们创建一个 Spring Data 存储库,在其中扩展ElasticsearchRepository以支持通用 Spring Data 功能,并扩展StoreItemRepositoryExtension以合并我们的自定义方法实现:
@Repository
public interface StoreItemRepository extends ElasticsearchRepository<StoreItem, String>,
StoreItemRepositoryExtension {
}
|
之后,让我们为聚合功能创建一个测试:
@ExtendWith(SpringExtension.class)
@ContextConfiguration(classes = ElasticSearchConfig.class)
public class ElasticSearchAggregationManualTest {
private static final List<StoreItem> EXPECTED_ITEMS = List.of(
new StoreItem("Multimedia", "PC Monitor", 1000L),
new StoreItem("Multimedia", "Headphones", 200L),
new StoreItem("Home tech", "Barbecue Grill", 2000L),
new StoreItem("Pets", "Dog Toy", 10L),
new StoreItem("Pets", "Cat shampoo", 5L));
...
@BeforeEach
public void before() {
repository.saveAll(EXPECTED_ITEMS);
}
...
}
|
我们创建了一个包含五个商品的测试数据集,其中每种类型都有一些商店商品。在测试用例开始执行之前,我们将这些数据填充到 Elasticsearch 中。继续,让我们调用findAllWithAggregations()方法并看看它返回什么:
@Test
void givenFullTitle_whenRunMatchQuery_thenDocIsFound() {
SearchHits<StoreItem> searchHits = repository.findAllWithAggregations(Pageable.ofSize(2))
.getSearchHits();
List<StoreItem> data = searchHits.getSearchHits()
.stream()
.map(SearchHit::getContent)
.toList();
Assertions.assertThat(data).containsAll(EXPECTED_ITEMS);
Map<String, Long> aggregatedData = ((ElasticsearchAggregations) searchHits
.getAggregations())
.get("type_aggregation")
.aggregation()
.getAggregate()
.sterms()
.buckets()
.array()
.stream()
.collect(Collectors.toMap(bucket -> bucket.key()
.stringValue(), MultiBucketBase::docCount));
Assertions.assertThat(aggregatedData).containsExactlyInAnyOrderEntriesOf(
Map.of("Multimedia", 2L, "Home tech", 1L, "Pets", 2L));
}
|
正如我们在响应中看到的,我们已经检索了搜索命中,从中我们可以提取准确的查询结果。此外,我们还检索了聚合数据,其中包含搜索结果的所有预期聚合。