基于50多项研究:一个关于阳光、昼夜节律和红光疗法如何保护大脑和改善帕金森症状的个人想法:
帕金森和光的故事:一个你没听过的秘密
嘿,同学们!今天咱们不聊课本,聊点酷的——光,特别是阳光,怎么可能是对抗帕金森病(PD)的秘密武器?!是的,你没听错,就是那个让爷爷奶奶手抖、走路慢吞吞的病。
我写这个,是因为我有个客户,他用了阳光和一种叫“光生物调节”的神奇疗法(后面会讲),帕金森症状大大改善!效果好到飞起!
郑重声明:下面全是科普,不是医生建议哈!
总结一下,咱们今天要聊啥:
1. 光咋跟咱们身体“互动”?
2. 光对大脑有啥影响?
3. 阳光和帕金森病是啥关系?
4. 光疗法对帕金森病有用吗?
5. 维生素D和帕金森病?
6. 近红外光是啥玩意儿?跟帕金森有啥关系?
7. 人造光是好是坏?
8. 光能止痛吗?
9. 生物钟(昼夜节律)咋也掺和进来了?
太阳,是地球上所有生命的“老祖宗”级别的“老板”。亿万年来,它老人家一直发着光,指挥着地球上的所有生物怎么生存、怎么进化。
想想咱们人体这台“高级机器”,有那么多能“吃”光的“零件”(叫光受体、色团啥的),光能影响咱们健康,一点都不奇怪!你晒了一辈子太阳,可能就决定了你以后会不会得抑郁症、糖尿病、老年痴呆,当然也包括帕金森!
先说说传统的帕金森治疗方法,为啥有点“坑爹”?
目前主流就是“补多巴胺”,吃一种叫“左旋多巴”(L-DOPA)的药。刚开始确实有用,能缓解手脚不灵光。
但问题是,时间一长,身体就“腻了”,药效越来越差,副作用一大堆:幻觉、乱动症(手脚自己乱晃)、老年痴、甚至对药物上瘾……平均两到五年,这药就开始“添乱”了。最后药越吃越多,生活质量反而更差。有时候,感觉“治病的药比病还折磨人”!
那有没有别的路?大自然早就给了我们线索——光!
为了搞懂光为啥这么牛,咱们得先扒一扒光是怎么跟身体“打交道”的。
光咋跟身体“互动”?
光不是只有眼睛能“看”到。身体里还有别的“光感器”,比如眼睛里的特殊细胞,皮肤里能合成维生素D的原料,甚至血液里的血红蛋白和细胞里的线粒体,都能跟特定波长的光“来电”。
光对大脑有啥影响?
不同颜色的光,“穿透力”不一样。紫外线(UV)基本就在皮肤表层“闹腾”。但红光和近红外光就不一样了,它们是“深度玩家”,能钻到身体深处。
有研究在老鼠身上发现,光甚至能穿过眼球,跑8厘米远,直达大脑里一个叫“黑质”的地方(这地方帕金森病最爱捣乱)!虽然人身上还没完全证实,但这已经很说明问题了。
而且,眼睛和黑质之间,还有条“专线”神经连接着呢!光信号能直接传过去!
阳光和帕金森病
太阳,是给咱们身体“充电”的最大电源,光谱从250纳米到4000纳米,啥都有。
其中,近红外光(NIR)占了太阳光光子的50%-70%!咱们的身体,就是在这几十亿年晒太阳的过程中进化出来的,近红外光可是“老朋友”!
科学研究早就发现,阳光和帕金森病有关系:
* 出生地纬度:在美国,出生地离赤道越远(越北边),死于帕金森病的风险越高。
* 瑞典研究:纬度越高(越北),帕金森发病率也越高。
* 维生素D:一项超大规模研究(近7万人)发现,体内维生素D水平越高(晒太阳多,紫外线B就能合成更多D),得帕金森的风险就越低!
* 夏天更活跃:研究发现,大脑里合成多巴胺的关键酶,在夏天会更活跃!
* 系统性回顾:一项综合研究直接说了:晒太阳多的人,得帕金森的风险更低!
光疗法对帕金森病有用吗?
现在有种“人造太阳灯”,能模拟太阳光的光谱,在晒不到太阳时派上用场。
这种光疗法不仅能治失眠、抑郁症,对帕金森患者的效果更是让人大跌眼镜!
有研究发现,用光疗法照一照,帕金森患者的抑郁、动作缓慢、肌肉僵硬都明显改善了!甚至有人把吃药的剂量减了50%!这简直是“神操作”!
乱动症(吃药的副作用)也减轻了,连“停药休息”都能耐受得更好了。运动功能的改善一般需要3-5周,但情绪、睡眠问题往往第一周就有好转。
研究者甚至说,光疗法可以单独用来治疗帕金森早期!
后来的研究也证实,光疗法配合吃药,能更好地控制乱动症。还有双盲试验(很严格的科学方法)证明,早上醒来照一小时光,能改善生活质量、情绪,连手抖都减轻了!
光疗法配合药物,不仅能缓解症状,长期坚持还能慢慢改善病情!多巴胺和血清素这两种“快乐神经递质”可能都参与了这个过程。
当然,要说亮度,最亮的光疗灯也才10000勒克斯,而大太阳底下,轻松达到5万到10万勒克斯!所以,能晒太阳,千万别偷懒!太阳光谱全,还能晒出维D!
维生素D和帕金森病
说到维生素D,就得提紫外线B(UVB)。它就像个“开关”,一照到皮肤,就能让皮肤里的7-脱氢胆固醇变成维生素D3,然后身体再加工成能用的“活性D”。
维生素D不足,得帕金森的风险直接飙升300%!一项研究发现,血里维生素D含量越高、晒太阳越多,得帕金森的风险就越低。
维生素D对大脑很重要:
* 它能帮大脑“抗氧抗炎”,清理垃圾。
* 调节免疫系统。
* 影响基因表达,比如控制制造多巴胺的“开关”基因。
* 大脑里那个出问题的“黑质”区域,维生素D受体和制造活性D的酶特别多!
所以,缺乏维生素D,可能就是在“慢性伤害”黑质里的多巴胺神经元!补充维生素D,对某些人可能有暂时稳定病情的作用。
动物实验显示,补D能减少大脑发炎和神经元损伤。但人体试验的结论还不太一致。
不过记住,维生素D只是阳光的好处之一!真正让你不得病的,是整个阳光!有研究说,充分晒太阳的人,得帕金森的风险只有别人的1/50!另一个主角就是近红外光!
近红外光和帕金森病
“光生物调节”(PBM),就是用特定波长的光(主要是近红外光)来治疗。在帕金森病的动物模型里,把近红外光照到黑质区域,效果杠杠的!
动物实验发现,近红外光能保护甚至“拯救”被毒素破坏的多巴胺神经元!
为啥这么牛?几个机制:
1. 给细胞“充电”:近红外光被细胞里的“能量工厂”(线粒体)吸收,让它们产生更多“能量货币”ATP,细胞活力满满!
2. 改善血液循环:光还能让血管舒张,血流更顺畅,给大脑送去更多氧气和养料,带走毒素(帕金森跟重金属、农药中毒也有关哦)。
3. 启动“防御程序”:短暂刺激产生一点“活性氧”,反而激活了身体的保护基因,好处能持续好几周甚至几个月!
头骨虽然挡住了紫外线,但对近红外光几乎是“透明”的!大脑里的脑脊液也特别“欢迎”近红外光,让它能顺利到达大脑深处的灰质(包括黑质)。
大脑的结构也挺“聪明”,灰质(处理信息的地方)就在外面,血供也从外往里送。灰质里的“黑色素”(就是让黑质变黑的东西)特别能吸收近红外光!
坏消息来了:人造光的“污染”!
现在的LED灯、荧光灯,都是“只给可见光,不给近红外光”的“假阳光”!长期对着这些玩意儿,会扰乱你的生物钟,影响睡眠,甚至可能伤害大脑里的多巴胺神经元!
研究发现,光污染越严重的地方,帕金森发病率越高!受教育程度高的人(可能用电脑多)也更容易得帕金森,程序员就是高危人群!
动物实验显示,长期暴露在只有可见光的环境里,黑质的多巴胺神经元数量会减少30%!
所以,多晒太阳,少看冷冰冰的LED灯,对帕金森患者特别重要!
光、疼痛和帕金森病
阳光还能帮你止痛?真的!晒太阳时,皮肤受到紫外线B照射,会释放一种叫“β-内啡肽”的物质,这玩意儿就是身体自带的“快乐止痛药”!
它能让你心情好、免疫力强、缓解疼痛、放松身心。
帕金森患者疼痛很常见,慢性疼痛的比例是正常人的两倍!知道晒太阳能止痛,是不是又多了一个晒太阳的理由?
生物钟(昼夜节律)和帕金森病
帕金森患者,一大半都有睡眠问题:睡不着、睡不醒、半夜乱动、白天困得不行……这跟大脑里多巴胺减少导致的生物钟紊乱有很大关系。
反过来,生物钟乱了,也会增加得帕金森的风险!因为会引发大脑发炎,伤害神经元。
眼睛里有种叫“黑视蛋白”(melanopsin)的感光蛋白,对蓝光特别敏感。它负责接收光线信号,告诉大脑里的“司令部”(视交叉上核,SCN):天亮啦!天黑啦!从而调整我们的生物钟。
晒太阳,特别是早上晒太阳,是调节生物钟最天然、最有效的方法!比晚上不开灯还重要!
研究发现,用光疗法(特别是早上照)治疗帕金森患者的白天嗜睡,效果很好!不仅能改善睡眠质量,连运动障碍都减轻了!
这说明,调好生物钟,对帕金森的治疗大有裨益!
总结一下:
大自然给了我们太阳,给了我们光,它们可能就是对抗帕金森病的“天然盟友”!晒太阳、调节生物钟、远离“假光”污染,这些简单的生活方式,或许比你想象的更有力量!
50项研究论文出处:
1. Ceravolo R, Frosini D, Rossi C, Bonuccelli U. Spectrum of addictions in Parkinson’s
disease: from dopamine dysregulation syndrome to impulse control disorders. J Neurol.
2010 Nov;257(Suppl 2):S276-283.
2. Hinson VK. Parkinson’s disease and motor fluctuations. Curr Treat Options Neurol. 2010
May;12(3):186–99.
3. Maggio R, Vaglini F, Rossi M, Fasciani I, Pietrantoni I, Marampon F, et al. Parkinson’s
disease and light: The bright and the Dark sides. Brain Research Bulletin. 2019 Aug
1;150:290–6.
4. Romeo S, Di Camillo D, Splendiani A, Capannolo M, Rocchi C, Aloisi G, et al. Eyes as
Gateways for Environmental Light to the Substantia Nigra: Relevance in Parkinson’s
Disease. ScientificWorldJournal. 2014 Jan 22;2014:317879.
5. Dommett E, Coizet V, Blaha CD, Martindale J, Lefebvre V, Walton N, et al. How Visual
Stimuli Activate Dopaminergic Neurons at Short Latency. Science. 2005 Mar
4;307(5714):1476–9.
6. Zimmerman S, Reiter RJ. Melatonin and the Optics of the Human Body. Melatonin
Research. 2019 Feb 28;2(1):138–60.
7. Kurtzke JF, Goldberg ID. Parkinsonism death rates by race, sex, and geography.
Neurology. 1988;38(10):1558–61.
8. de Pedro Cuesta J. Studies on the prevalence of paralysis agitans by tracer methodology. Acta Neurol Scand Suppl. 1987;112:1–106.
9. Evatt ML, DeLong MR, Khazai N, Rosen A, Triche S, Tangpricha V. Prevalence of
Vitamin D Insufficiency in Patients With Parkinson Disease and Alzheimer Disease.
Archives of Neurology. 2008 Oct 1;65(10):1348–52.
10. Aumann TD, Raabus M, Tomas D, Prijanto A, Churilov L, Spitzer NC, et al. Differences
in Number of Midbrain Dopamine Neurons Associated with Summer and Winter
Photoperiods in Humans. PLOS ONE. 2016 Jul 18;11(7):e0158847.
11. Zhou Z, Zhou R, Zhang Z, Li K. The Association Between Vitamin D Status, Vitamin D
Supplementation, Sunlight Exposure, and Parkinson’s Disease: A Systematic Review
and Meta-Analysis. Med Sci Monit. 2019 Jan 23;25:666–74.
12. West A, Jennum P, Simonsen SA, Sander B, Pavlova M, Iversen HK. Impact of
naturalistic lighting on hospitalized stroke patients in a rehabilitation unit: Design and
measurement. Chronobiology International. 2017 Jul 3;34(6):687–97.
13. Willis GL, Moore C, Armstrong SM. A historical justification for and retrospective analysis of the systematic application of light therapy in Parkinson’s disease. Rev Neurosci. 2012 Mar 1;23(2):199–226.
14. Willis GL, Armstrong SM. A therapeutic role for melatonin antagonism in experimental
models of Parkinson’s disease. Physiol Behav. 1999 Jul;66(5):785–95.
15. Artemenko AR, Levin II. [The phototherapy of parkinsonism patients]. Zh Nevrol Psikhiatr Im S S Korsakova. 1996;96(3):63–6.
16. Willis GL, Turner EJD. Primary and Secondary Features of Parkinson’s Disease Improve with Strategic Exposure to Bright Light: A Case Series Study. Chronobiology International. 2007 Jan 1;24(3):521–37.
17. Paus S, Schmitz-Hübsch T, Wüllner U, Vogel A, Klockgether T, Abele M. Bright light
therapy in Parkinson’s disease: a pilot study. Mov Disord. 2007 Jul 30;22(10):1495–8.
9
18. McSharry C. Could sunlight offer protection from Parkinson disease? Nat Rev Neurol.
2010 Sep;6(9):468–468.
19. Wang J, Yang D, Yu Y, Shao G, Wang Q. Vitamin D and Sunlight Exposure in
Newly-Diagnosed Parkinson’s Disease. Nutrients. 2016 Mar 4;8(3):142.
20. Buell JS, Dawson-Hughes B. Vitamin D and neurocognitive dysfunction: preventing
“D”ecline? Mol Aspects Med. 2008 Dec;29(6):415–22.
21. Wang TT, Tavera-Mendoza LE, Laperriere D, Libby E, MacLeod NB, Nagai Y, et al.
Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin
D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685–95.
22. Puchacz E, Stumpf WE, Stachowiak EK, Stachowiak MK. Vitamin D increases
expression of the tyrosine hydroxylase gene in adrenal medullary cells. Brain Res Mol
Brain Res. 1996 Feb;36(1):193–6.
23. Suzuki M, Yoshioka M, Hashimoto M, Murakami M, Noya M, Takahashi D, et al.
Randomized, double-blind, placebo-controlled trial of vitamin D supplementation in
Parkinson disease. Am J Clin Nutr. 2013 May;97(5):1004–13.
24. Knekt P, Kilkkinen A, Rissanen H, Marniemi J, Sääksjärvi K, Heliövaara M. Serum
vitamin D and the risk of Parkinson disease. Arch Neurol. 2010 Jul;67(7):808–11.
25. Calvello R, Cianciulli A, Nicolardi G, De Nuccio F, Giannotti L, Salvatore R, et al. Vitamin
D Treatment Attenuates Neuroinflammation and Dopaminergic Neurodegeneration in an
Animal Model of Parkinson’s Disease, Shifting M1 to M2 Microglia Responses. J Neuroimmune Pharmacol. 2017 Jun;12(2):327–39.
26. Shaw VE, Spana S, Ashkan K, Benabid AL, Stone J, Baker GE, et al. Neuroprotection of
midbrain dopaminergic cells in MPTP-treated mice after near-infrared light treatment.
Journal of Comparative Neurology. 2010;518(1):25–40.
27. Darlot F, Moro C, El Massri N, Chabrol C, Johnstone DM, Reinhart F, et al. Near-infrared
light is neuroprotective in a monkey model of Parkinson disease. Annals of Neurology.
2016;79(1):59–75.
28. Mitrofanis J. Why and how does light therapy offer neuroprotection in Parkinson’s
disease? Neural Regeneration Research. 2017 Apr;12(4):574.
29. Vellingiri B, Suriyanarayanan A, Abraham KS, Venkatesan D, Iyer M, Raj N, et al.
Influence of heavy metals in Parkinson’s disease: an overview. J Neurol. 2022 Nov
1;269(11):5798–811.
30. Bloem BR, Boonstra TA. The inadequacy of current pesticide regulations for protecting
brain health: the case of glyphosate and Parkinson’s disease. The Lancet Planetary
Health. 2023 Dec 1;7(12):e948–9.
31. Romeo S, Viaggi C, Di Camillo D, Willis AW, Lozzi L, Rocchi C, et al. Bright light
exposure reduces TH-positive dopamine neurons: implications of light pollution in
Parkinson’s disease epidemiology. Sci Rep. 2013 Mar 6;3:1395.
32. Frigerio R, Elbaz A, Sanft KR, Peterson BJ, Bower JH, Ahlskog JE, et al. Education and
occupations preceding Parkinson disease. Neurology. 2005 Nov 22;65(10):1575–83.
10
33. Goldman SM, Tanner CM, Olanow CW, Watts RL, Field RD, Langston JW. Occupation
and parkinsonism in three movement disorders clinics. Neurology. 2005 Nov
8;65(9):1430–5.
34. Taufique SKT, Kumar V. Differential activation and tyrosine hydroxylase distribution in the
hippocampal, pallial and midbrain brain regions in response to cognitive performance in
Indian house crows exposed to abrupt light environment. Behavioural Brain Research.
2016 Nov 1;314:21–9.
35. Fell GL, Robinson KC, Mao J, Woolf CJ, Fisher DE. Skin β-endorphin mediates
addiction to ultraviolet light. Cell. 2014 Jun 19;157(7):1527–34.
36. Mylius V, Perez Lloret S, Cury RG, Teixeira MJ, Barbosa VR, Barbosa ER, et al. The
Parkinson disease pain classification system: results from an international
mechanism-based classification approach. PAIN. 2021 Apr;162(4):1201.
37. Rutten S, Vriend C, van den Heuvel OA, Smit JH, Berendse HW, van der Werf YD.
Bright Light Therapy in Parkinson’s Disease: An Overview of the Background and
Evidence. Parkinson’s Disease. 2012 Dec 23;2012:e767105.
38. The PRIAMO study: A multicenter assessment of nonmotor symptoms and their impact
on quality of life in Parkinson’s disease - Barone - 2009 - Movement Disorders.
39. Hampp G, Ripperger JA, Houben T, Schmutz I, Blex C, Perreau-Lenz S, et al.
Regulation of Monoamine Oxidase A by Circadian-Clock Components Implies Clock
Influence on Mood. Current Biology. 2008 May 6;18(9):678–83.
40. Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in
the rat dorsal striatum via daily activation of D2 dopamine receptors.
41. Sakamoto K, Liu C, Kasamatsu M, Pozdeyev NV, Iuvone PM, Tosini G. Dopamine
regulates melanopsin mRNA expression in intrinsically photosensitive retinal ganglion
cells. Eur J Neurosci. 2005 Dec;22(12):3129–36.
42. Lauretti E, Di Meco A, Merali S, Praticò D. Circadian rhythm dysfunction: a novel
environmental risk factor for Parkinson’s disease. Mol Psychiatry. 2017 Feb;22(2):280–6.
43. Videnovic A, Klerman EB, Wang W, Marconi A, Kuhta T, Zee PC. Timed Light Therapy
for Sleep and Daytime Sleepiness Associated With Parkinson Disease: A Randomized
Clinical Trial. JAMA Neurology. 2017 Apr 1;74(4):411–8.
44. Fifel K, Videnovic A. Chronotherapies for Parkinson’s disease. Progress in Neurobiology.
2019 Mar 1;174:16–27.
45. College of Optometry [Internet]. 2016 [cited 2023 Dec 28]. Scientists study effects of
sunlight to reduce number of nearsighted kids.
46. Isaac W. A study of the relationship between the visual system and the effects of
d-amphetamine. Physiology & Behavior. 1971 Feb 1;6(2):157–9.
47. Kallman WM, Isaac W. The effects of age and illumination on the dose-response curves
for three stimulants. Psychopharmacologia. 1975 Dec 1;40(4):313–8.
48. Pum ME, Rubio AR, Carey RJ, Silva MADS, Müller CP. The effects of cocaine on
light-induced activity. Brain Res Bull. 2011 Feb 28;84(3):229–34.
49. Willis GL. Intraocular microinjections repair experimental Parkinson’s disease. Brain
Research. 2008 Jun 27;1217:119–31.
50. Videnovic A, Noble C, Reid KJ, Peng J, Turek FW, Marconi A, et al. Circadian Melatonin
Rhythm and Excessive Daytime Sleepiness in Parkinson Disease. JAMA Neurology.
2014 Apr 1;71(4):463–9.
51. Naskar A, Prabhakar V, Singh R, Dutta D, Mohanakumar KP. Melatonin enhances
L-DOPA therapeutic effects, helps to reduce its dose, and protects dopaminergic
neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice.
Journal of Pineal Research. 2015;58(3):262–74.
52. Sun J, Lin XM, Lu DH, Wang M, Li K, Li SR, et al. Midbrain dopamine oxidation links
ubiquitination of glutathione peroxidase 4 to ferroptosis of dopaminergic neurons.
53. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain
dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and
neurochemical correlations. J Neurol Sci. 1973 Dec;20(4):415–55.
54. Willis GL. Parkinson’s disease as a neuroendocrine disorder of circadian function:
dopamine-melatonin imbalance and the visual system in the genesis and progression of
the degenerative process. Rev Neurosci. 2008;19(4–5):245–316.